
1. Preamble

Developing enterprise software applications with security requirements can be a cumbersome and
error-prone process. In such applications often the security is spread all over the application code.
This makes it difficult to understand how things work and hard to maintain security in such code.

With model-driven development business logic should be expressed in the objects of your domain
model. As for now there is no convenient way to express access control requirements through
your domain model. Hence access control-code is normally written into the service layer or data-
access layer.

JPA Security offers a way to express access control through your domain model and additionally
supplies a solution to completely separate access control logic from business logic, improving
performance and maintainability. JPA Security provides an interface to define security
requirements of your domain model via configuration (Annotations or XML).

Due to it's smooth integration into current Java standards,it may be integrated into every layer of
your application. It enables you to configure rules defining access control for your Entity Beans
and Embeddables based on the current security context (i.e. the currently authenticated user
and/or its roles in the application).

JPA Security uses the notion of security unit to refer to a set of Java bean classes and their
corresponding access rules. In the current version of JPA Security a security unit directly
corresponds to a persistence unit of JPA. The content of a security unit is defined at deployment
time and may not change at runtime.

In contrast to the security unit , the security context starts at runtime with the authentication of a
user. As of version 0.4.0 of JPA Security the content of this context is completely customizable
and you can do so by implementing the SecurityContext interface. The security context contains
information like i.e. the current user, its roles and/or the current tenant, but any kind of context
information that is needed to specify the authorization of the current user to access beans may be
made available through the security context.

JPA Security smoothly integrates with existing authentication solutions like specified in the servlet
specification, with EJB or Spring Security. JPA Security may be configured to take the current
user and its roles provided by this technologies and fill the security context with it.

-

-

-

-

2. Basics - Rules, Users and Roles

Authorization is the process of giving someone permission to do or see something. It is used to
determine what the authenticated user is allowed to do in the application and what data he is
allowed to see.

2.1. Organizing Authorization

There are different ways of organizing authorization. Widely used approaches are role-based
authorization or access control lists.

In role-based Authorization users are assigned to roles. Rights to do or get something are

granted to these roles.

In the concept of "Access Control Lists "an access control list is assigned to every object that

has to be accessed. An access control list is a list of access control entries. Every of this

entries holds a reference to a user or a role it is valid for, as well as the access rights that the

referenced user or role has on the object.

2.2. Access Control: Authorization in Action

Access Control is the process of allowing and forbidding access to resources based on the
authorization of the current security context. There are different levels of access control.

Presentation left access control - Access control is implemented in the presentation tier of the

application. Only data that the user is allowed to see is displayed and only buttons for actions

that the user is allowed to do are displayed and enabled. Although it may be necessary to

provide different views to users with different roles, handling access control only at the

presentation layer can be a big problem, when it involves loading and transferring masses of

data to the presentation layer, where it gets filtered out, because the current user is not allowed

to see it.

Service level access control - Access control is implemented in the service tier. Often this is

realized using method-based access control. For every method in the service tier it is defined

which users and/or roles are allowed to call it. Although this kind of security is widely supported

by current security solutions like JavaEE Security and Spring Security it is often not the correct

location of handling access control because access control usually depends more on the data

used than on the actions executed. This leads to code that checks the current user and/or its

roles to decide which data access tier method to invoke or this kind of checks are done by the

code invoking the service methods. However manual handling of authorization informations

leads to spreading the security all over the code. This makes changes to security requirements

hard to handle.

-

-

-

Class level access control - Using class level access control on the entity beans of an

application leads to a more fine-graded access control mechanism. If you are able to define

which entity types may be used by which user or role (and you can do this in EJB 3 with the

@RolesAllowed annotation) you have a clean way of defining which user may see and/or

change which data without manual handling of authorization information. However this level is

not detailed enough in many cases.

Instance level access control - With instance level access control for every user and/or role you

can define permissions on an entity basis. Access Control Lists are widely used for this

approach, but JPA Security provides a more flexible way to accomplish this, like we see later.

Property level access control - A step further from instance level access control is property level

access control, where you can define access restrictions on a property base. JPA Security

currently only supports property level access control for properties of type @Embeddable by

providing instance level access control for embeddables.

2.3. Access Control in JPA Security

In JPA Security the access to entities and embeddables is defined by access rules. There is one
set of access rules per security unit. This set of access rules applies to every JPA query and every
entity and embeddable you get out of an EntityManager of the persistence unit that corresponds to
that security unit.

2.3.1. Example: Access Rule

The following rule restricts the read access to accounts, where the owner is equal to the current
user. In other words: every user can read only its own accounts.

 GRANT READ ACCESS TO Account account WHERE account.owner =
CURRENT_PRINCIPAL

In the previous example the CURRENT_PRINCIPAL is provided by the currently active security
context. When the access rule is evaluated, the CURRENT_PRINCIPAL is received from the
security context and the rule is evaluated against this principal

2.3.2. Access Rules in JPA Security

JPA Security allows the definition of rules that grant create, read, update and/or delete access.
Currently there is no explicit way to deny access. Although this is not needed, since every entity or
embeddable to which no access is granted may not be accessed. An exception from this behavior
are classes for which no access rule exists at all. Objects of such class may be accessed without
any restriction.

2.3.3. The syntax of access rules

The general syntax of an access rule of JPA Security looks like GRANT [CREATE] [READ]
[UPDATE] [DELETE] ACCESS TO entity_name alias [where_clause], where entity_name must
be an entity or embeddable of the persistence unit (according to the JPA Specification, defaults to
the class name if not otherwise specified) and the alias is an alias for that entity or embeddable
that may be used in the where clause.

The syntax of the where_clause is derived from the syntax of WHERE clauses of JPQL, the query
language of JPA. Within the clause any alias may be used that is defined by your current security
context. The build-in security contexts define two aliases, which are CURRENT_PRINCIPAL and
CURRENT_ROLES . The CURRENT_PRINCIPAL alias will be evaluated to the currently
authenticated principal during runtime and the CURRENT_ROLES alias will be expanded to a list
of roles that the current principal belongs to. No input parameters may be used in the WHERE
clause of access rules. If you need more aliases to be defined (i.e. CURRENT_TENANT), you will
have to implement your own security context like described later.

2.3.4. Providing access rules

With JPA Security there are two predefined ways to provide access rules: via XML configuration
or via Annotations. In a later chapter we will see how to implement your own way of providing
access rules.

2.3.4.1. Access rules via XML

One predefined way to provide access rules in JPA Security is via a file called security.xml , which
is located in the META-INF directory of your application. Below is an example of the structure of
such file:

 <
 security xmlns="http://jpasecurity.sf.net/xml/ns/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://jpasecurity.sf.net/xml/ns/security

 http://jpasecurity.sf.net/xml/ns/security/security_1_0.xsd"
 version="1.0"
 >
 <
 persistence-unit name="..."
 >
 <
 access-rule
 >
 ...
 <
 /access-rule
 >

 ...

 <
 /persistence-unit
 >
 <
 /security
 >

-

-

2.3.4.2. Access rules via Annotations

The other predefined way to provide access rules in JPA Security is via Annotations. You may
annotate your entity classes with one of the following two annotations:
javax.annotation.security.RolesAllowed and net.sf.jpasecurity.security.rules.Permit .

Note that the semantics of the @RolesAllowed annotation slightly differs between the EJB
Specification and JPA Security: If you annotate a class with the @RolesAllowed annotation this
means for EJB any access to any method of an instance of that class will cause a
SecurityException , if the current user is not in one of the roles allowed. JPA Security goes a step
further: The current user will not retrieve this object from database if he is not in one of the roles
allowed. JPA Security does not support the @RolesAllowed annotation at method-level.

The @Permit annotation has two optional parameters:

With the parameter access you can specify which kind of access shall be granted by this rule.

The value is an array of the AccessType enum. Possible values of an AccessType are

CREATE , READ , UPDATe and DELETE .

With the parameter rule you can specify a rule to restict the access for entities of the annotated

class. The syntax of this rule is derived from the where -clause of JPQL (see previous section),

where the special keyword this serves as an alias for the annotated entity or embeddable that

may be used in the rule.

Example:

 @Permit(access = AccessType.READ, rule = "owner = CURRENT_PRINCIPAL")
 public class Account {
 ...
 }

2.3.4.3. Applying of access rules

Read-access rules are applied to every entity or embeddable that is accessed via a JPA-Security-
enabled EntityManager or via object-navigation through objects obtained from such EntityManager
. When the object is accessed via JPQL, the access rules are applied directly to the JPQL-query,
allowing the filtering to take place within the database. When the object is accessed via object-
navigation, JPA Security tries to avoid database-calls and evaluates the rules in memory. When
in-memory-evaluation is not applicable and the entity-manager is still open, a query is performed
to evaluate the query. In the next section you can read, in which cases in-memory-evaluation is
applicable and where not. When in-memory-evaluation is not applicable and the entity-manager is
already closed, a SecurityException will be thrown.

Update-access rules are applied on flush() or commit() . Again the default-behaviour is in-
memory-evaluation then, falling back to a query like described above.

Create-access rules and delete-access rules are applied when the appropriate action is performed
with the entity-manager (either direct or by cascading). In-memory-evaluation applies like
described above.

For all cases JPA Security is clever enough to apply the appropriate access rules for sub- and
superclasses, too.

2.3.4.4. In-Memory-Evaluation

Every access rule that does not contain any sub-select can be evaluated in memory. For queries
that contain sub-selects it depends on the kind of the sub-select and the content of the (first-level)
entity-manager-cache of JPA Security. Sub-selects where all aliases from within the sub-select
can directly replaced with an alias from outside can be evaluated in memory. Thus the following
access rule can be evaluated in memory:

 GRAND ACCESS TO TestBean bean WHERE EXISTS (SELECT b FROM TestBean b
WHERE b = bean AND b.accessControlList = CURRENT_PRINCIPAL)

Since the alias from within the sub-select cannot directly replaced by the alias from outside, the
following query cannot be evaluated in memory:

 GRAND ACCESS TO TestBean bean WHERE EXISTS (SELECT entry FROM
AccessControlListEntry entry WHERE bean.accessControlList = entry.accessControlList AND
entry IN (CURRENT_ROLES)

Although there can be no guarantee in general that the last query can be evaluated in memory, in-
memory-evaluation can still be achieved by ensuring that the entities that are needed to evaluate
the sub-select are contained in the (first-level) entity-manager-cache. For example the last rule
can be evaluated in memory if there exists an AccessContolListEntry in the cache that meets the
specified where-clause. Remember, that on persist the check will be done before the persist-
operation is cascaded. So when you want to persist a TestBean that contains an
accessControlList with entries that match the where-clause, you have to persist the entries before
you persist the TestBean to ensure the entries are in the cache.

1.

2.

3.

4.

Authentication is the process of determining and verifying the identity of someone or something. In
multi-user applications, the process of authentication for an application is needed to get
knowledge about the person that is currently using the application. The widely used process for
authentication is a login process during which the user is asked for his username and password. A
user that knows one of this username/password-tuples is assumend to be the person belonging to
that username. Besides username/password authentication there are other methods like public-
key-authentication with a digital certificate, to name just one.

2.4. Authentication in JPA Security

JPA Security uses an implementation of the net.sf.jpasecurity.configuration.SecurityContext
interface to be aware of the currently authenticated user and other related information (like its
roles, tenant, ...) at runtime.

2.4.1. Default-Configuration for Authentication

By default JPA Security will try to auto-detect your security context. This is done via the indirection
of an authentication provider. An authentication provider provides access to the current
authenticated user and its roles. The detection follows the following rules (The first matching rule
is taken):

When spring-security is in the classpath, the SpringAuthenticationProvider is used.

When java:comp/EJBContext is available in the JNDI-context, the EjbAuthenticationProvider is

used.

When JSF is available in the classpath, the JsfAuthenticationProvider is used.

Otherwise the DefaultAuthenticationProvider is used.

2.4.2. Customizing Authentication

When the described auto-detection strategy does not work for your environment, you may specify
the class name of any implementation of the net.sf.jpasecurity.configuration.SecurityContext
interface as value of the persistence-property net.sf.jpasecurity.security.context in your
persistence.xml . To provide backward compatibility to JPA Security 0.3
net.sf.jpasecurity.security.authentication.provider is also valid, if you specify a class name of an
implementation of the net.sf.jpasecurity.configuration.AuthenticationProvider interface, but any
specification of the net.sf.jpasecurity.security.context property will take precedence.

3. Getting started with JPA Security

In order to use JPA Security you have to enable it for your persistence unit. This can be done by
modifying your "persistence.xml "to point to JPA Security. Additionally you have to configure JPA
Security to use your original persistence provider.

Supposed you have an existing JPA application. Your persistence.xml may look similar to this:

 <persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
 version="1.0">

 <persistence-unit name="your-persistence-unit-name" transaction-type="...">

 <provider>your.persistence.provider.ClassName</provider>

 <class>your.persistent.ClassName</class>
 <!-- More class-mappings go here -->
 ...

 <properties>
 <!-- persistence-provider-specific properties go here -->
 ...
 </properties>

 </persistence-unit>
 </persistence>

After integrating JPA Security your "persistence.xml "may look like this:

 <persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
 version="1.0">

 <persistence-unit name="your-persistence-unit-name" transaction-type="...">

 <provider>net.sf.jpasecurity.persistence.SecurePersistenceProvider</provider>

 <class>your.persistent.ClassName</class>
 <!-- More class-mappings go here -->
 ...

 <properties>
 <property name="net.sf.jpasecurity.persistence.provider"
 value="your.persistence.provider.ClassName" />
 <!-- persistence-provider-specific properties go here -->
 ...
 </properties>

 </persistence-unit>
 </persistence>

We changed the <provider >tag to point to JPA Security's implementation of the
PersistenceProvider interface and added the property net.sf.jpasecurity.persistence.provider to
point to your original persistence provider. That is all you need to integrate JPA Security.

To use Java EE authentication information for JPA Security you may integrate JPA Security like
described in the previous chapter and specify
net.sf.jpasecurity.security.authentication.EjbAuthenticationProvider as authentication provider in
your persistence properties. You need to define all the roles your application is using with the
@DeclareRoles annotation at at least one of your entity beans in order to make the
EjbAuthenticationProvider work correctly.

If you do not have a version of a spring-security.jar in your classpath usually you do not need to
define your own authentication provider as the auto-detection mechanism of JPA Security should
automatically install the EjbAuthenticationProvider .

To use Servlet authentication information for JPA Security within your JSF application you may
integrate JPA Security like described in the previous chapter and specify
net.sf.jpasecurity.jsf.authentication.JsfAuthenticationProvider as authentication provider in your
persistence properties. You need to define all the roles your application is using with the
@DeclareRoles annotation at at least one of your entity beans in order to make the
JsfAuthenticationProvider work correctly.

If you do not have a version of a spring-security.jar in your classpath usually you do not need to
define your own authentication provider as the auto-detection mechanism of JPA Security should
automatically install the EjbAuthenticationProvider (if you are in a Java EE server) or the
JsfAuthenticationProvider if you are using JSF outside a Java EE server, both using Servlet
authentication information.

You need to have the jpasecurity-jsf module in your classpath in order to make the
JsfAuthenticationProvider work.

If you are using the Spring-framework with Spring Security, you don't have to follow the chapter
Getting started with JPA Security (also you can do and specify the
net.sf.jpasecurity.security.authentication.SpringAuthenticationProvider in your
persistence.properties).

The easiest way to integrate Spring-Security is to simply replace your
LocalEntityManagerFactoryBean or LocalContainerEntityManagerFactoryBean in your Spring
configuration with the appropriate counterpart in the net.sf.jpasecurity.spring.persistence package
(which are SecureLocalEntityManagerFactoryBean and
SecureContainerEntityManagerFactoryBean).

The autodetection mechanism of JPA Security will automatically detect that you are using Spring
Security, but you can specify your security context or authentication provider as bean property of
the Secure*EntityManagerFactoryBean in your spring configuration.

You need to have the jpasecurity-spring module in your classpath to use spring security.

If you neither use Java EE authentication nor Servlet authentication (via JSF) nor Spring-Security
you either have to provide your own implementation of the
net.sf.jpasecurity.configuration.SecurityContext interface or you have to use one of the build-in
authentication providers, which are DefaultAuthenticationProvider and
StaticAuthenticationProvider .

Both provide methods to authenticate users and roles and methods to apply runAs behavior. The
DefaultAuthenticationProvider may be used in server-site applications where the authentication is
on a per-thread-basis whereas the StaticAuthenticationProvider may be used on client-site
applications where authentication per vm is intended.

You may take a look at the simple tutoral to see an example of using the
StaticAuthenticationProvider . In the next chapter you will learn how to provide a custom security
context or authentication provider.

-

-

-

-

4. Customization

JPA Security is configured via the persistence properties in your persistence.xml . Below is a list
of persistence properties that are supported out of the box by JPA Security.

net.sf.jpasecurity.persistence.provider - This is the only property that is required by JPA

Security. It specifies the class name of the original persistence provider that shall be used by

JPA Security to do the actual database access.

net.sf.jpasecurity.security.authentication.provider - This property specifies the class name of

the implementation of an authentication provider which may be any implementation of the

interface net.sf.jpasecurity.configuration.AuthenticationProvider .

net.sf.jpasecurity.security.context - This property specifies the class name of the

implementation of a security context which may be any implementation of the interface

net.sf.jpasecurity.configuration.SecurityContext .

net.sf.jpasecurity.security.rules.provider - This property specifies the class name of the

implementation of an access rules provider which may be any implementation of the interface

net.sf.jpasecurity.configuration.AccessRulesProvider .

As stated before you may implement your own way of providing access rules (i.e. via JDBC).You
have to implement the interface net.sf.jpasecurity.security.rules.AccessRulesProvider and specify
the property net.sf.jpasecurity.security.rules.provider in your persistence.xml with the classname
of your implementation of theinterface net.sf.jpasecurity.security.rules.AccessRulesProvider .
Take a look at its javadoc documentation for further reference.

4.1. Accessing persistence properties

Your custom access rules provider may need additional configuration parameters. You can define
them via the persistence properties in your persistence.xml . All you have to do, is to implement
the interface net.sf.jpasecurity.persistence.PersistenceInformationReceiver . Then you will have
the persistence properties injected when your persistence provider is initialized.

4.2. Implementing an Access Rules Provider

When you take a look at the methods of net.sf.jpasecurity.rules.AccessRulesProvider , you may
notice that you need to create objects of type net.sf.jpasecurity.security.AccessRule . This objects
may be created using a net.sf.jpasecurity.jpql.parser.JpqlParser in conjunction with an
net.sf.jpasecurity.security.rules.AccessRulesCompiler , but you may subclass
net.sf.jpasecurity.security.rules.AbstractAccessRulesProvider to inherit this functionality. Then you
have to override initializeAccessRules and call compileRules from within.

4.3. Implementing a JDBC access rules provider

The following code shows how to implement an access rules provider that reads its access rules
from a database. You may specify the needed parameters in your persistence.xml .

 public class JdbcAccessRulesProvider extends AbstractAccessRulesProvider {

 public static final String ACCESS_RULES_JDBC_URL_PROPERTY =
"net.sf.jpasecurity.security.rules.jdbc.url";
 public static final String ACCESS_RULES_JDBC_USERNAME_PROPERTY =
"net.sf.jpasecurity.security.rules.jdbc.username";
 public static final String ACCESS_RULES_JDBC_PASSWORD_PROPERTY =
"net.sf.jpasecurity.security.rules.jdbc.password";
 public static final String ACCESS_RULES_JDBC_TABLE_PROPERTY =
"net.sf.jpasecurity.security.rules.jdbc.table";
 public static final String ACCESS_RULES_JDBC_COLUMN_PROPERTY =
"net.sf.jpasecurity.security.rules.jdbc.column";

 protected void initializeAccessRules() {
 Map<String, String> properties = getPersistenceProperties();
 String url = getPersistenceProperty(ACCESS_RULES_JDBC_URL_PROPERTY);
 String username =
getPersistenceProperty(ACCESS_RULES_JDBC_USERNAME_PROPERTY);
 String password =
getPersistenceProperty(ACCESS_RULES_JDBC_PASSWORD_PROPERTY);
 String table = getPersistenceProperty(ACCESS_RULES_JDBC_TABLE_PROPERTY);
 String column =
getPersistenceProperty(ACCESS_RULES_JDBC_COLUMN_PROPERTY);
 Connection connection = null;
 Statement statement = null;
 ResultSet resultSet = null;
 Collection<String> accessRules = new HashSet<String>();
 try {
 connection = DriverManager.getConnection(url, username, password);
 statement = connection.createStatement();
 resultSet = statement.executeQuery("SELECT " + column + " FROM " + table);
 while (resultSet.next()) {
 accessRules.add(resultSet.getString(1));
 }
 compileRules(accessRules);
 } catch (SQLException e) {
 throw new PersistenceException("Error reading access rules", e);
 } finally {

 close(resultSet);
 close(statement);
 close(connection);
 }
 }

 private String getPersistenceProperty(String propertyName) {
 String propertyValue = getPersistenceProperties().get(propertyName);
 if (propertyValue == null) {
 throw new PersistenceException("Error reading acces rules, property " + propertyName +
" must be set");
 }
 return propertyValue;
 }

 private void close(ResultSet resultSet) {
 if (resultSet != null) {
 try {
 resultSet.close();
 } catch (SQLException e) {
 //ignore
 }
 }
 }

 private void close(Statement statement) {
 if (statement != null) {
 try {
 statement.close();
 } catch (SQLException e) {
 //ignore
 }
 }
 }

 private void close(Connection connection) {
 if (connection != null) {
 try {
 connection.close();
 } catch (SQLException e) {
 //ignore
 }
 }
 }
 }

In your persistence.xml you can specify the needed parameters like following.

 <persistence ...>

 <persistence-unit name="..." ...>

 ...

 <properties>
 <property name="net.sf.jpasecurity.security.rules.jdbc.url" value="jdbc:your.db.url" />
 <property name="net.sf.jpasecurity.security.rules.jdbc.username" value="your_username"
/>
 <property name="net.sf.jpasecurity.security.rules.jdbc.password" value="your_password"
/>
 <property name="net.sf.jpasecurity.security.rules.jdbc.table"
value="your_table_with_access_rules" />
 <property name="net.sf.jpasecurity.security.rules.jdbc.column"
value="your_column_containing_the_access_rules" />
 </properties>

 </persistence-unit>
 </persistence>

You can implement a custom security context in a similar way like the access rules provider. You
only have to implement the interface net.sf.jpasecurity.configuration.SecurityContext and specify
the property net.sf.jpasecurity.security.context in your persistence.xml with the classname of your
implementation of theinterface net.sf.jpasecurity.configuration.SecurityContext . Take a look at its
javadoc documentation for further reference.

4.4. Accessing persistence properties

As your access rules provider your custom security context may need additional configuration
parameters, too. You also can define them via the persistence properties in your persistence.xml .
Again you have to implement the interface
net.sf.jpasecurity.persistence.PersistenceInformationReceiver to have the persistence properties
injected when your security context is initialized.

4.5. Implementing a servlet-filter security context

The following code shows how to implement a security context that reads its authentication
information from the HttpSession .

 public class SecurityContextFilter implements SecurityContext, Filter {

 private static final Alias PRINCIPAL_ALIAS = new Alias("principal");
 private static final Alias ROLES_ALIAS = new Alias("roles");
 private static final Alias TENANT_ALIAS = new Alias("tenant");
 private static final Collection<Alias> ALIASES
 = Collections.unmodifiableList(Arrays.asList(PRINCIPAL_ALIAS, ROLES_ALIAS,
TENANT_ALIAS));

 private static ThreadLocal<HttpSession> session = new ThreadLocal<HttpSession>();

 public Collection<Alias> getAliases() {
 return ALIASES;
 }

 public Object getAliasValue(Alias alias) {
 HttpSession session = SecurityContextFilter.session.get();
 if (session == null) {
 return null;
 }
 return session.getAttribute(alias.getName());
 }

 public Collection<?> getAliasValues(Alias alias) {
 Object aliasValue = getAliasValue(alias);
 if (aliasValue instanceof Collection) {
 return (Collection<?>)aliasValue;
 } else if (aliasValue == null) {
 return null;
 } else if (aliasValue.getClass().isArray()) {
 return Arrays.asList((Object[])aliasValue);
 } else {
 return Collections.singleton(aliasValue);
 }
 }

 public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain)
throws IOException, ServletException {
 try {
 if (request instanceof HttpServletRequest) {
 HttpServletRequest httpRequest = (HttpServletRequest)request;

 AuthenticationFilter.session.set(httpRequest.getSession());
 }
 chain.doFilter(request, response);
 } finally {
 AuthenticationFilter.session.remove();
 }
 }

 public void init(FilterConfig config) throws ServletException {
 }

 public void destroy() {
 }
 }

You now have to specify the class as web filter in your web.xml .

 <?xml version="1.0" encoding="ISO-8859-1"?>
 <web-app version="2.4"
 xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/web-
app_2_4.xsd">

 ...

 <filter>
 <filter-name>securityContextFilter</filter-name>
 <filter-class>your.package.SecurityContextFilter</filter-class>
 </filter>

 <filter-mapping>
 <filter-name>securityContextFilter</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

 ...

 </web-app>

Now your login-process may store the authentication information (the principal, roles and tenant)
in the HttpSession and you are done.

-

-

5. One Step deeper

JPA Security intercepts your action with the EntityManager . Whenever you retrieve an entity from
your EntityManager , it is subsidized by a proxy from JPA Security. Likewise whenever you
perform a JPQL-query, it is modified with additional clauses and parameters to match your
security rules.

5.1. Modification of queries

JPA Security modifies the where-clause of your JPQL queries by adding restrictions according to
your access rules. This behavior enforces security-rule-evaluation within the database. Only
database rows resulting in entities that the user is allowed to read will be loaded. When using
Hibernate as persistence provider, the Hibernate - WITH -clause is supported by JPA Security.

5.2. Secure entities

The proxies that are created around your entities are called SecureEntity (actually they implement
an interface of the same name). This is how they behave:

When an entity is accessed for the first time a check is performed whether the current user is

allowed to read the entity. On the first access of the entity all one-to-one- and many-to-one-

relations to other entities are replaced by relations to SecureEntities which screen the original

entities Furthermore one-to-many- and many-to-many-relations are replaced by

SecureCollections , which are explained later.

Changes to the SecureEntity are buffered and only flushed to the entity when the active

transaction is committed. This occurs when flush() is called on the EntityManager or a query is

performed with flush-mode AUTO (which is the default). As a matter of course whenever a

SecureEntity flushes its changes a check is performed whether the current user is allowed to

update the entity or not. During the flush of a SecureEntity all relations to other SecureEntities

or to SecureCollections are replaced by their corresponding original.

5.3. Secure collections

Collection relationships (i.e. one-to-many- and many-to-many-relations) are handled via
SecureCollections . Secure collections are filtered in memory and the backing collection will
contain every entity of the original relationship. The main difference is that when you access any
method of a secure collection it will behave, as if it only contained those entities you are allowed to
read. In addition write-access will only be possible if write-access is allowed to the owning entity.
Furthermore, for performance reasons every modification to a secure collection is queued and will
not be executed until a commit operation.

5.4. Other Operations

Every entity that was loaded over a secured EntityManager can be casted to SecureEntity . This
interface provides methods to programmatically check accessibility, force read- and write-check
(via refresh() and flush()) and check the state of the entity.

A secure EntityManager can be casted to AccessManager , which allows programmatic security-
checks, too.

5.4.1. In-Memory evaluation

On every operation that does not result into a query to the database JPA Security tries to check
the configured access rules in memory. That means, for normal create-, update- and delete-
operations, no database interaction is needed for the access check .

In-memory evaluation works perfectly, when no subselect is contained in the access rules. When
the access rules contain subselects, some constraints are placed on the definition of the access
rules. The first restriction is, that access rules that contain subselects may only contain subselects
within EXISTS-clauses and not within IN-clauses. This restriction is likely to change in the future.

For example the following works:

 GRANT ACCESS TO TestEntity entity WHERE EXISTS (SELECT e FROM TestEntity e
WHERE e = entity AND ...)

Whereas the following will not work for the current release:

 GRANT ACCESS TO TestEntity entity WHERE entity IN (SELECT e FROM TestEntity e
WHERE ...)

Every subselect that contains only references to pathes to properties of the checked entity will
work.

For example the following works, since acl is a direct reference to a property of the checked entity
(indicated by acl = entity.acl):

 GRANT ACCESS TO TestEntity entity WHERE EXISTS (SELECT acl FROM
AccessControlList acl WHERE acl = entity.acl AND ...)

Whereas the following will not work since there is no direct path from a property of the checked
entity to e (Reverse navigation would take place from e.acl to e , which is currently not supported).

 GRANT ACCESS TO TestEntity entity WHERE EXISTS (SELECT e FROM AclEntry e
WHERE e.acl = entity.acl)

The access rule could be rewritten to work with in-memory evaluation:

 GRANT ACCESS TO TestEntity entity WHERE EXISTS (SELECT e FROM
AccessControlList acl JOIN acl.entries e WHERE acl = entity.acl)

When in-memory evaluation cannot take place within the previously defined constraints, there is
another chance to evaluate a query in memory: When the entities that are needed for the
specified evaluation are already loaded within the specific EntityManager , evaluation will take
place based on that entities. That means, if every AclEntry of the specific entity was loaded into
memory by previous operations, the following access rule can be evaluated:

 GRANT ACCESS TO TestEntity entity WHERE EXISTS (SELECT e FROM AclEntry e
WHERE e.acl = entity.acl)

When an access rule cannot be evaluated the access-check will return false . This behavior will
change in the future since it is not deterministic since the evaluation depends on previously loaded
entities .

	1. Preamble
	2. Basics - Rules, Users and Roles
	2.1. Organizing Authorization
	2.2. Access Control: Authorization in Action
	2.3. Access Control in JPA Security
	2.3.1. Example: Access Rule
	2.3.2. Access Rules in JPA Security
	2.3.3. The syntax of access rules
	2.3.4. Providing access rules
	2.3.4.1. Access rules via XML
	2.3.4.2. Access rules via Annotations
	2.3.4.3. Applying of access rules
	2.3.4.4. In-Memory-Evaluation

	2.4. Authentication in JPA Security
	2.4.1. Default-Configuration for Authentication
	2.4.2. Customizing Authentication

	3. Getting started with JPA Security
	4. Customization
	4.1. Accessing persistence properties
	4.2. Implementing an Access Rules Provider
	4.3. Implementing a JDBC access rules provider
	4.4. Accessing persistence properties
	4.5. Implementing a servlet-filter security context

	5. One Step deeper
	5.1. Modification of queries
	5.2. Secure entities
	5.3. Secure collections
	5.4. Other Operations
	5.4.1. In-Memory evaluation

